Systems Thinking for SDGs:

- ✓ Leaving no one behind
- ✓ Multistakeholder partnerships
- ✓ Inclusiveness and interdependence
- ✓ Interconnectedness & indivisibility

GIS is the nervous system for abstracting, perceiving, organizing, interpreting and anticipating events across space over time!

2021 GEOGEEK MAPP CHALLENGE | Mapping for a sustainable future

Realizing the Sustainable Development Goals (SDGs): The GIS Perspective

Nashon J. Adero GIS Lecturer and Champion Taita Taveta University, Voi, Kenya nashon.adero@gmail.com

@hopadero

Date: 07 October, 2021

12:00 - 13:00 EAT

Empowering inclusive and sustainable transformation

Where is Taita Taveta University?

Impact-Borderless-Digital - N.J.A. 10/7/2021 2

SYNTHESIS OF GIS TRAINING NEEDS FROM TEACHING AND INTERACTION EXPERIENCE

ADERO (2019)

Mapping GIS by user training needs at TTU

Low training need

Basic training need

High training need

Extreme training need

Background Highlights

Scale, location, trends and patterns

Key points:

We are all one with the rest of nature

Sustainability is an old concept with roots traceable to the linkages between mining and forestry in the early 18th century as a need arose to avert a looming wood crisis due to silver mining in Freiberg (Silver City).

We live in an interconnected world

"Dividing an elephant in half doesn't produce two small elephants" – unintended consequences

Location-based intelligence is the heart of today's geodata-driven digital revolution

World Population by Region

back to top ↑

									Urban	
# Region	Population (2020)	Yearly Change	Net Change	Density (P/Km²)	Land Area (Km²)	Migrants (net)		Med. Age	Pop %	World Share
1 Asia	4,641,054,775	0.86 %	39,683,577	150	31,033,131	-1,729,112	2.2	32	0 %	59.5 %
2 Africa	1,340,598,147	2.49 %	32,533,952	45	29,648,481	-463,024	4.4	20	0 %	17.2 %
3 Europe	747,636,026	0.06 %	453,275	34	22,134,900	1,361,011	1.6	43	0 %	9.6 %
4 Latin America and the Caribbean	653,962,331	0.9 %	5,841,374	32	20,139,378	-521,499	2	31	0 %	8.4 %
5 Northern America	368,869,647	0.62 %	2,268,683	20	18,651,660	1,196,400	1.8	39	0 %	4.7 %
6 Oceania	42,677,813		549,778	5	8,486,460	156,226	2.4	33	0 %	0.5 %

Worldometer Dec 24, 2020

Comparative Metrics on Africa

Median age in Africa, compare 38 in USA, 47 in Japan and Germany, Kenya 19.7

1.3 Africa's population, compare 7.7 Billion World population

Africa's average male/female life expectancy in 2018, compare 70/74 global average, and 59 Kenya's average

Urban Africa, compare 55% global, 49% Asia, 81% L.A.C, 77% Europe, 82% N.A, Kenya 27%

Source: Statista 2019, Indexmundi 2019, Worldometer 2019, World Bank 2019.

We are at a critical juncture on all exciting journey of generational succession.

The Silent Generation: World War Born 1925 - 1945

The Baby Boomers: Space Age, postwar optimism Born 1946 - 1964

Generation Z:
Netizens
Born 1996 - 2012

Generation Alpha: Al
Born 2013 - 2025

Impact-Borderless-Digital - N.J.A.

GIS and Systems Thinking for Sustainability: 7Ps

A synthesis by Nashon Adero based on participation in 20 mining and natural resource management conferences across the world (2017 – 2020)

econometric models, optimisation

models, system dynamics models

mitigation, climate change

adaptive capacity, weak

sustainability

Geography and health

Good health and well-being – **SDG 3**

Geomedicine = geography + health: where you live determines your health through the water, air, resources, etc. you consume and the social circles you interact with!

Dr John Snow's map of the 19th century for cholera research confirmed the critical place of mapping in health

Biogeography – Alexander von Humboldt used maps to study abstract aspects at the intersection of geography and biology

Dynamic modelling for health sector planning leveraged by GIS

• SDG 3

HEALTH 4.0 The GIS Perspective Quality A ZCESS Durbors Presented at the

2021 Geogeek Mapp Challenge

@ Esri EA | Nairobi, October 07,2021

Way forward in eHealth

Dynamic modelling for Sustainable ecotourism leveraged by GIS

- SDG 8
- SDG 15

Education 4.0: Contextual Intelligence

The Future of Work

The **Future of Work** requires a radical shift in Kenya's education and skills development paradigm.

65%

Primary school pupils who will be engaged in jobs which still don't exist yet! (Davison, 2012)

The Curve of Influence vs. the Crux of Formal Education

Are you equipping yourself with the competencies needed to face the future: digital fluency, lifelong learning, automation, artificial intelligence, machine learning, big data, etc.?

GLOBALISATION AND TRANSFERABLE SKILLS

Seeing #results, worrying about the #reason, mismanaging the #resource, and neglecting the #source?

The challenge progressive #education must address in the post-pandemic era of #DigitalTransformation

Digital Literacy Digital Fluency

Data Literacy Data Fluency

Local Awareness Global Awareness

Raw Talents Mentored & Refined Talents

Formal Education Lifelong Skills
Development

Sex

Answered: 437 Skipped: 0

Gender parity in responses

Adero (2021).

Nationwide youth
(18-35) skills and
unemployment
survey under the
ACCESS University of
Ideas Competition
for African Lecturers,
March – April 2021

Work-ready digital skills based on 63 questions with 96 points

Source:
Adero (2021).
Nationwide youth (18-35) skills and unemployment survey, March –
April 2021

STATISTICS		
Lowest Score	Median	Highest Score
1%	13%	82%

Mean: 16%

Standard Deviation: 15%

Age bracket (select)

Answered: 437 Skipped: 0

Mainly youths in their 20's

Source:
Adero (2021).
Nationwide youth (18-35) skills and unemployment survey, March –
April 2021

Working with real data

- Arable percentages varying from approximately 8% to 70%
- Non-uniform distribution
- Classification intervals to become clearer by plotting a histogram
- Why Natural Breaks (Jenks)?

Equal intervals

- Arable percentages varying from approximately 8% to 70%
- Non-uniform distribution
- Classification intervals to become clearer by plotting a histogram
- Why Natural Breaks (Jenks)?

Natural breaks (Jenks)

- Arable percentages varying from approximately 8% to 70%
- Non-uniform distribution
- Classification intervals to become clearer by plotting a histogram
- Why Natural Breaks (Jenks)?

GIS – Visualisation ensures inclusivity

 GIS provides sound facilities for multistakeholder participation using visual maps as opposed to numbers/statistics alone

 Shared visual evidence with location makes robust decision support systems Compare the following figures in terms of ease of understanding and effectiveness of communication across diverse stakeholder profiles

Visualisation at spatial scales using maps

Radar plots

Choice of plotting scale for visualisation - logarithmic

Acknowledgement, further resources, contact

Esri Eastern Africa (& Prof. S. Onywere) for helping promote GIS education at Taita Taveta University

Taita Taveta University (TTU) & TAITAGIS – platform for thought leadership and knowledge-led influence

System Dynamics Society (SDS) – for global networking in system dynamics and **Elsevier Researcher Academy** – platform for research networking and capacity building in modern research

FORCE11 – forum and community for open science communication and e-scholarship

Links to further reading: Journal paper recommending GIS for COVID models